An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index

نویسندگان

چکیده

Abstract Consider a proper, isometric action by unimodular locally compact group G on Riemannian manifold M with boundary, such that / is compact. Then an equivariant Dirac-type operator D under suitable boundary condition has index $${{\,\mathrm{index}\,}}_G(D)$$ index G ( D ) in the K -theory of reduced $$C^*$$ C ∗ -algebra $$C^*_rG$$ r . This common generalisation Baum–Connes analytic assembly map and (equivariant) Atiyah–Patodi–Singer index. In part I this series, numerical $${{\,\mathrm{index}\,}}_g(D)$$ g was defined for element $$g \in G$$ ∈ , terms parametrix trace associated to g An type formula obtained paper, we show that, certain conditions, $$\begin{aligned} \tau _g({{\,\mathrm{index}\,}}_G(D)) = {{\,\mathrm{index}\,}}_g(D), \end{aligned}$$ τ = , $$\tau _g$$ orbital integral over conjugacy class implies theorem from yields information about -theoretic It also shows homotopy-invariant quantity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant K-theory, Groupoids and Proper Actions

In this paper we define complex equivariantK-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid G, this defines a periodic cohomology theory on the category of finite G-CW-complexes. A suitable groupoid allows us to define complex equivariant K-theory for proper actions of non-compact Lie groups, which is a natural extension of the theory defined in [24]. For the particul...

متن کامل

An equivariant index formula for elliptic actions on contact manifolds

Given an elliptic action of a compact Lie group G on a co-oriented contact manifold (M, E) one obtains two naturally associated objects: A G-transversally elliptic operator Db / , and an equivariant differential form with generalised coefficients J (E, X) defined in terms of a choice of contact form on M . We explain how the form J (E, X) is natural with respect to the contact structure, and gi...

متن کامل

Twisted Equivariant K-theory for Proper actions of Discrete Groups

We will make a construction of twisted equivairant K-theory for proper actions of discrete groups by using ideas of Lück and Oliver [16] to expand a construction of Adem and Ruan [1].

متن کامل

A Geometric Description of Equivariant K-Homology for Proper Actions

LetG be a discrete group and letX be aG-finite, properG-CW-complex. We prove that Kasparov’s equivariant K-homology groups KK∗ (C0(X),C) are isomorphic to the geometric equivariant K-homology groups of X that are obtained by making the geometric K-homology theory of Baum and Douglas equivariant in the natural way. This reconciles the original and current formulations of the Baum-Connes conjectu...

متن کامل

Twisted Equivariant K-theory, Groupoids and Proper Actions

In this paper we define twisted equivariantK-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid G, this defines a periodic cohomology theory on the category of finite G-CW-complexes with G-stable projective bundles. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2022

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02942-0